La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

t: G+ 47 The Complete Reference

two caomplete T/0 systems: the one inherited from C and the object-ariented
system defined by C1 +. This chapter covers the C file system. (The C++ file
system is discussed in Parl I'wo.) While most new code will use the C++ file system,

knowledge of the C file system is still important for the reasons given in the preceding
chapter.

T hus chapter describes the C file system. As explained in Chapter 8, C++ supports

e o IR B e R A e R T P B AR s

'é.w{'lﬂersus C++ File I/O

There is sumnetimes confusion over how C's (ile system relates to C++. Tirst, C++
suppaorts the entire Slandard C file system. Thus, if vou will be porting C code to
C++, you will not have to change all of your I/O routines right away. Second, C++
defines its own, object-oriented [/0 system, which includes both 1/0 functions and
170 operators. The C++ /0 system completely duplicates the functionality of the C
1/C system and renders the C file system redundant. While you will usually want to
use the C++ 1/0 system, you are free to use the C file system if you like. Of course,
most C++ programmers clect to use the C4+ 1/0 system for reasomns that are made
clear in Part Two of this book.

A S P ML S G Y e AR o 04 s it s

Streams and Files

Before beginning our discussion of the C file systern, i is necessary to know the difference
between the terms streams and fifes. The C T/O system supplies a consistent interface
to the programmer independent of the actual device being accessed. That is, the C1/0
system provides a level of abstraction between the programmer and the device. This
abstraction is called a stream and the actual device is called a file. It is important to
understand how streams and files interact.

fﬂwmw' The concept of streums and files is also important to the C++ 1O system discussed in
p _ Part Tewo.

The C file system is desighed to work with a wide variety of devices, including terminals,
disk drives, and tape drives. Even though each device is very different, the file system
transfarms each into a logical device called a stream. All streams behave similarfy. Because
strearns are largely device independent, the same function that can write to a disk file

can also be used to write to another type of device, such as the console. Thore are two
types of streams: text and binary.

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File 1/0

o Text Streams

A text strem Is a sequence of characters. Slandard C allows (but does nol require) a
text stream to be organized into lines terminated by a newiine character. However,
the newline character is optional on the last line. {Actually, most C/C++ compilers do
nol terminate text strcams with newline characters.) In a fext stream, certain character
translations may vceur as required by the host environment. For example, a newline
may be converted to a carriage return/ lincfeed pair. Therefore, there may not be a
one-ta-one relationship between the characters that are written {or read} and thuse
on the external device. Also, because of possible translations, the number of characters
written {or read) may not be Lhe sape as those on the external device.

Binary Streams
A bintary stream is a sequence of bytes that have a one-to-one correspondence to those
in the external device—that is, no character translations occur. Also, the number of
bytes written (or rcad) is the same as the number on the external device. However,
an implementation-defined number of null bytes may be appended to a binary stream.
These null bytes might be used to pad the information so that it Ells a sector on a disk,

for example.

[

.
Files
Tn C/C++, a file may be anylhing from a disk file to a terminal or printer. You associate -
0 a stream with a specific file by performing an open operation. Once a Ble is open,

; information may be exchanged between it and your program.

Not all files have the same capabilities. For example, a disk file can support random
access while some printers cannot. This brings up an important point about the CL/O
system: All streams are the same but all files are not.

If the file can support position requests, opening that file alsv initializes the file
position indicator to the start of the file. As each character is read from or wriften 1o
the file, the position indicator is incremented, ensuring progression through the file.

You disassociate a file from a specific stream with a close operation. If you close
a file opened for cutput, the contents, il any;, of its associated strearn are written to the
external device, This process is generally referred to as flushing the stream, and guarantees
als, that no information is accidentally left in the disk buffer. All files are closed automatically
1 when your program terminates normally, either by main(} returning to the operating ;
= ' system or by a call to exit(). Files are not closed when a program terminates abnormatly,
= g such as when it crashes or when it calls abort().

’ Each stream that is associated with a file has a file control structure of type FILE.
Never modify this file control block.

If you are new to programming, the separalion of streams and files may seem

g unnecessary or contrived. Just remember that its main purpose is to provide

e

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

218

G++: The Complete Reference

a consistent interface. You need only think in terms of streams and use only one file
system to accomplish all 1/0 operations. The 1/0 svstem awtomatically converts the
raw inpult or oulpul [rom cach device into an easily managed sleeam,

File System Basics

The C file system is composed of several interrelated functions. The most common of
lhese are shown in lable Y-1. Lhey require Lhe header stdioh. C++ programs may also
use the C+—style header <estdios.

i
il

7
Name Function
fopeny) Opcens a file.
tclosel) Closes a file.
pule() Writes a character lo a (ile.
fputel) Same as pute().
setc() Reads a character from a file.
fgetel) Same as gete().
tgets(} Reads a string from a file.
fputsy } Writes a string to a file.
Facek() Seeks to a specified byte in a file.
frell() Retuins the current file position.
fprintf() [5 to a file what printf{ } is to the console.
{scani() Is to a file whal scanf() is lo the console.
feof() Returns true if end-of-file is reached.
ferrox() Returns true if an error has occurred.
rewind(} Resets the file position indicator to the
beginring of the file.
removel) lirases a file.
fflush(} Flushes a file. .
Table 91. Commonly Used C Fife-System Fuﬁc'rf"ohs' a

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File 170 315

‘I'he header file stdio.h and <cstdio> header pravide the prototypes for the 1/0

le
T functions and define these Lhree types: size_t, fpos_t, and FILE. The size_t type is some
variety ol unsigped integer, as is fpos_t. The FILE type is discussed in the next section.
Alse defined in stdio.h and <estdie> are several macros. The ones relevant to this
chapter are NULL, EOF, FOPEN_MAX, SEEK_SET, SEEK_CUR, and SEEK_LEND.
‘I'he NULL macro defines a null puinter, The OF macro is generally defined as -1
and is the value returned when an input function tries to read past the end of the file.
Lof FOPEN_MAX defincs an integer value that de tarmines the numbecr of files that may
also e open at any one tme. L'he other macros are used with fseek(), which is the function

{hat performs random access on a file.

The File Pointer
—_ The file pointer is the common thread that unites the C T/0 system. A file poinieris a
pointer to a structure of type FILE, I points to information lhat defines various things
about the file, meluding its name, status, and the current position of the file. In essence,
the file pointer identifies a specific file and is used by the associated stream to direct the
operation of the 1/0 functions. In order to read or write files, vour program needs to use
file pointers. To obtain a file pointeér variable, use a statement like this:

5

BITE Tind

Opening a File
The fapen() functivn opens a stream for nse and links a file with that stream. Then
it returns the file pointer assaciated with that [ile. Most often (and for therest of this
discussion), the file is a disk file. The fopen() function has this proletype:

FILE *fopen{const char *filename, const char “thode);

where fllenanie is a pointer toa string of characters that make up a valid flename and
may include a path specification. The string pointed to by miode determines how the file
will be opened. Table 9-2 shows the legal values for mode. Strings jike "r+b" mav also be
represented as "rh+."

Mode Meaning

r Open a text file for reading.
w Create a text file tor wriking,.
a Append to a text file.

Table 9-2. The Legal Values for Mode

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

216 . C++: The Complete Reference

Vode Meaning
b Open a binary file for reading.
wh Create a binary file for writing,
aly Append to a binary file.
I Open a text file for read fwrite,
W Create a text file for read fwrite.
a+ Append or create a text file for
read /write,
T+b Open a binary file for read /write.
wth Create a binary file for read /write.
a+b Append or create a binary file for
read /write.

Table 92, The Legal Values for Mode {continued)

As stated, the fopen() function returns a file painter. Your program should
never alter the value of this pointer. If an errar occurs when it is Lrying to open
the file, fopen() returns a null pointer,

The following code uses fopen() to open a file named TEST for output.

FTILE * fp;

fi Fopeni"testt) et

While technically correct, you will usually see the preceding code written like Lhis;
FLLE *t;

TEolire - fopor{ttestr, twt e sNTLLY
prinLE ("Carmcz opan file n'i 7

a1 [

This method will detect any error in opening a file, such as a write-protected or a full
disk, before your program attempts to write to it. In general, vou wiill always want to
confirm that fupen{) succeeded before attempling any other aperations on the file,

e ——————

|

l“l

|

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File I/D

i

Although most of the file modes are self-cxplanatory, a few comments arc in order.
If, when opening a file for read-only operations, the file does not exist, fopen() will fail.
When opcning a file using append mode, if the file does not exist, it will be created.
Further, when a file is opened for append, all new data written to the {ile will be written
to the end of the file. The original contents will remain unchanged. If, when a file is
opened for writing, the file docs not exist, il will be created. ¥ it does exist, the contents
of the original filc will be destroyed and a new file created. The difference between
mades r+ and w+ is that r+ will not create a filc if it does not exist; however, w+ will
Further, if the file already exists, opening it with w+ destroys ils contents; opening it
with r+ dees not.

As Table 9-2 shows, a file may be opened in either text or binary mode. In most
implementations, in text mode, carriage return /linefeed sequences are translated to
newline characters on input. On outpult, the reverse occurs: newlines are translated
to carriage return/ linefeeds. No such translations occur on binary files.

The number of files that may be open at any one time is specified by FOPEN_MAX.
1his value will usually be at least 8, but you must check your compiler ‘s documentation
for its exact value.

Closing a File

The fclose{) function closes a stream that was opened by a call to fopen(). It writes
any data still remaining in ihe disk buffer to the file and does a formal operating-
system-level close on the file. Fajlure to ¢lose a stream invites all kinds of irouble, i
including lost data, destroyed filcs, and possible intermittent errors in your program. :'
felosel) also frees Lhe file control block associated with the stream, making it available
for reuse. There is an operating-syslem limit to the number of open files you may have
at any one time, so you may haveto clase one file belore opening another.

The Fclosef } function has this prototypc:

int felose(FILE *fp);

where fp is the file pointer returned by the call to fopen(). A return value of zero si enifies
a succossful close operation. The function returns EOF if an error occurs. You can use the
standard function ferror } {discussed shortly) to determine and report any problems.
Generally, fclose{) will fail only when a disk has been prematurely removed from the
drive or Lhere is na mote space onithe disk.

Wwriting a Character

The C /O system defines two equivalent functions that output a character: pute() and
fpute(). (Actually, pute() is usually implemented as a macro.) There arc two identical '

1 functions simply to preserve compalibitity with older versions of C. 'Lhis book uses
© ' pute(), but you can use fpute() if you like.

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

b

C++: The Complete Reference

[The patel } funetion writes characters (o a file that was previously opencd fur
wriling using the fopen(} function. The prototype of this function is

int putc{int ch, FILE *fp);

where fp is the file pointer returned by fopent) and ¢k is the character to be output.
The file pointer tells pute(} which file to write to. Although ¢k is delined as an int,
only the low-order byte is written.

T a putc() operalion is successful, it retirns the character written. Otherwise, it

returns EOF.

3 Reading a Character
g - There are also two cquivalent funclions that input a character: gete() and fgete().
Both are delined to preserve compatibility with older versions of C. This book uses
getel) (which is usually implemented as a macro), but vou can use fgetc() il you like.
I he getel) function reads characters from a file opened in read mode by fopen().

The prototype of gete() is

int getc(FILE *fu);
where fp i a file pointer of type FILE returned by fopen(). gete() returns an integer,
bul the character is contained in the low-order byte. Urtless an efror occurs, the high-

order byte is zero.
The gete{) function returns an TOF when the end of the file has been reached.

Therefore, to read (o the end of a text file, you could usc the following code:

do {
oh = geto(fp);
| whilei{ch!=Li) :

However, getel) also returns EOF if an error occurs. You can use ferror() to determine
precisely what has occurred.

Using fopen(), gete(}, pute(), and fclose()

The furctions fopen(), getc(), putet), and fclose() constitute the minimal set of file
routines. The [ollowing program, KTOT, is a simple exan ple of using pute(}, fopen(),
and felose(). Tt reads characters from the keyboard and writes them o a disk file until
the user types a dollar sign. The filename is specified from the command line, For example,
if you call this program KT, lyping KTOD TEST allows yotu to enter lines of text

into the file called TEST. i

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File 170 ¢

/% KTOD: E key to disk prpgram. L2

#include «stdio.h>
#include =stdiib.h»

int mainlint arge, char vergvil)
{

FILV *Ip;
char ch;

if{arcct=2) (. .
princtirYou forgot Lo enter the filename.i: Y

exitil);

if{{fp=fopen(argvil], twh)y ==NTRLY
printf{"Cannot vpen fite.wn"l;
exici{l};

Ao |
ck = getchar();
pute ok, o) .
} while ich != '§°1}; |

telose{fip:;
return 9;
; The complementary program DTOS reads any text file and displays the contents on
1© ' the screen. 1t demonstrates gete().
/% OT0S: A program that reads files and displays theh
o the screen. */
#include <stdio.h>

tinclude =stdlib.h>

int mainlint arge, char *argvll)

FILE *fp; i
char an;

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

220 C++: The Complete Reference

fl forgot Lo enter the filoname.inty

T {Zp=fopar(arev, 1], "r*il==NJ1Li i
privtt("Carncs oozn Llle\nvi;

exit{i;

b o ogeto (Tpo: f% pead one character /7

wihl e fchil-EOFY |
putcharicnt ;. /% prins on soreen s/

ch o= getollp!;

tolose (fp);

rezurn 0;

To try these two programs, first use KTOD Lo create a text file. Then read its
contents using 1Y1OS.

Using feof()

As just described, gelc() retums EOF when the end of the file has been encountered.
However, testing the value returned by gete() m ay not be the best way to determine
when vou have arrived at the end of a file, L'irst, the file system can operate on bolh
text and binary files. When a file is opened for binary input, an integer value that will
test equal to EOF may be read. This would cause the input rontine to indicate an end-o{-fle
condition even though the physical end of Lhe fite hiad not been reached. Second, getc()
returns EOF when it fails and when it reaches the end of the file. Using only the return
value of gete(), it is impossible to know which occurred. To solve these prablems, the
C [ile system includes the function feaf(), which determines when the end uf the file
has been encountered. The feof(} {unction has this prototvpe:

int feof(FILE *f);

feof{) retums trze if the end of the file has been reached: olherwise, it retuins (. Therefore,
the following routine reads a binary file until the end of the file is encountered:

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File I/

‘ while(!feof (fp)) ch = geteifp):

Of course, you can apply this method to texl files as well as binary files.

The following program, which coples text or binary files, contains an cxamplg of
feof(). The files are opened in binary mode and feof(} checks for the end of the file.

]

Fe Copy a file. */
#irclude <stdlo. b
#include <stdlib.h>

ipl main!{int arge, char *srygv(]}
{

FILE =in, *cut;

char ch;

if{arge!=3}) |
printf("¥ou forgot to enter a filename.\n"};

exini{l);
}
ift{in=fopeniargvliil, Sy) ==NULL} {
printf("Cannot open scurce file.hn"}; ;
awxit (1] ?
)
it lout=fopen(argv[2], "wh")) == NULL] :
prinlLf (*Cannot cperl destination file.\n"]; i
exit (1]+ E
]

e
I

/* This code actually ¢oples the Lile. */
while{'feosf{in}}) {

ch — geLc{in);

if (!'Feoftin)) puteich, out);

friase(in);
felose (ouh);

raturn 0

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

1 222 [++:The Complete Reference

Working with Strings: fputs() and fgets()

I addition to getc() ana pute(), the C file system supports the related funclions
fgets() and fputs(), which read and write character strings from and to a disk file.
These functions work just like pute() and getel), but instead of reading or writing
a single character, they read or write strings, They have the following prototypes:

int fputs{const char *sfr, FULE *fr);
char *fgetsichar *str, int lepeth, FILE *fp);

The fputs() turction writes the string puinted to by str to the specified stream,
It relurns EQF if an error occurs.

The fgets{) function reads a string fram the specified stream until cither a newline
character is read or jength —1 characters have been read. Tf a newline is read, il will be part
of the string (unlike the gets(} function). The resultant string will benull terminated. The
function returns str if successful and a null poinler Il an error occurs.

The following program demonstrates Fputs(). It reads strings from the keyboard
and wriles them to the tile called TEST. To terminate the program, enter a blank line.
Since gets{)} does not store the newline character, one is added before each string is
written to the file so that the file can be read more easily.

#irglude <stdic.hs>
Yirclode <ztdiib.hs
#irclide =string.hs>

inT malnlvold)
{
ctar sorl|an];

PELET Yk

LE{ifp = Eopan("UBEST", "w'l] ==NULL)
orial L Cannot open Zile. o'y
exit (1)

printT("Enter a atring (CR to quit!:sn");

qess(str);

eTreoel (str, "\n"l; JF add a4 newline */
trutsi{istr, fpl;

Vowhkiledfstrl_tin');

returr J;

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File |/D

rewind()

The rewind{) function resels the file position indicator to the beginning of the file
specified as its argument. That is, it "rewinds" the file. Its prototype is

void rewind(FILE p);

where fp is a valid file pointer.

To see an example of rewind(), you can modify the program from the previous
section sa that il displays the contents of the file just created. To accomplish this, Lhe ks
program rewinds the file after input is complete and then uses fgets() to read back
the file. Notice thal the file must now be opened in read /write mode using "w+"
for the mode parameter.

it
he

#include <stdio. b
tinciude <ztdlib.h>
#include <etring. k=

int main(void)
B {
char strisel;
Fi—= *fo;

if{{fp = fopen{"TESI", "w+"}}==NULL} {
i printf ["Cannot open Eile.wn"); f
exit(l];

do [ﬂ
printi('knter a string {(CH Lo guitioho"); I
gets{str);:
grreart{str, "wn"); /Y add a newline */ :
[putsi{atr, fpl; i

} while(*etri='\n'];

/% now, read and display the file */
rewindi{fp}: ¢* resct Ilie posicion indicator to
alart of the [ile. */
while{!fecf(fp}) {
tgets{str, 79, ipt:

printl (ser);

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

224 C++: The Complete Reference

o

return

ferror()

The ferror!) function determines whether a file operation has produced an error. The
lerror() function has Lhis prolotype:

il ferrar(FILE *f);

where it 1s a valid file poinler 1t returns lrue H an error has occurred during the last
file nperation; otherwise, it retums false. Becanse each file operation scts the error
candilion, ferror() should be called immnediately after cach file operation; otherwise,
an crror may be lost.

'The following program illustrates ferror() by removing tabs from a file and
subslituting the appropriate number of spaces. The tab size is defined by TAB_SIZE.
Notiee how ferror() is called after cach file operation. To use the program, specify the
names of the input and output files on the command line.

£ e program subotitutes spaces Zor taks

in & toxt Zile and supipliss error checking, 7

Yiqzlude <stdio. b

#iqzlude <szdlik.h>

fdefine TAD_SIZE &

sdefirs 79 0

wodatins 20T

ien vl P vl

Al omalndinl arge, char ~argwvill
FILE *in, *out:
I9k: sab,. A

chrar rhy

il{cryz

orints

lisnages adefabh sdusespabeinly

a¥icily;

ifid{in = fopeniarav[1], "ra"il--NITTG

i um“lhl

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chagter 9; File 1/0

print f{"Cannct open g, argv[1lt;

SR

if!lout = [openlargv(3l, “wb'}}-=NULL) {
printf("Cannct open %¥s.\0', argv|ilis

e
exit(l);
}
tab = 0;
do {

ch = geto{in); I
it{ferroriin}} err{IN;];

/% if tab found, output appropriate numser of spaces */
if(gh——'yE') ©
far{:=tab; i<8; i++) {
putc{' ', outl;
if{terroriout}} err {(OUT);
1
tab - 0;
b
else {
puccfich, out}:
if(ferror{ocut)) err{QUT};

[

e R

tao++;
if{tab==TaB_SI7RE] tab = 0;
itich=="%n* || ch=="Ar'} tab = U;

1
} whilei{!fecofiin)};
felogeiin);
fclose [aut)

raeburn 0;

void erxr(inc €)

{
jt{e==1N} princf{"Erroxr on inpub.in'l:
glge printf{"Error on output.in™l;
exit{1};

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

226 C++: The Complete Reference

Erasing Files

The remove() function erases the specified [ile. Tt prototype is
nt remove(const char *filennme);

It returns zoto if successful; oltherwise, il refurns a nonyero value.
The following program erases the file specified on the command line, Howoever, it

first gives you a chance to change your mind. A utility like this might be useful (o new
compuler users.

£* Double check bolore erasing. @/
fincloede <ztdio. ks
finc_uds <=ldlzb, b

#inzlune <ctvpe.hs

it mainiint arge, char =argvll)
I
L

char =sLr[&807;

It (arge! =2 |
pzinzf{"uszgo: xerase <t lenames\r");
cxIb (1

printi(irase %27 (YN} - o, aravil]i:
get s istr) ;

[Coupnser (Ystr)——'v

ifirenovelarev(1))

i
prinli{"Canrot erxase file.vn'}:
=

A
aNIL1L,

retlizn: ks

Flushing a Stream

I vou wish to flush the conlents of an output stream, use the fflushi) funclion, whose
proloty pe is shown here:

mi Musl(FILE *A);

il |hl il

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

| fread()and fwr|te() L T,

Chapter 9: File 1/0 227

This function writes the contents jof any buffered data to the file associated with fp.
If you call Klush() with fp being hull, all files opened for outpul are flushed.
The fflush() {unction returns| 0 if successbual; olherwise, it returns EOF.

To read and write data types that are longer than one byte, the C file system provides
{wo functions: fread() and fwrite(). These lunctions allow the reading aud writing
of blocks of any type of data. Thenr prototypes are

size_t fread(vold *buffer, size t seni_bytes, size_t count, FILE B
size_t fwritefconst void *buffar, size_t num byles, size_t count, FILE *fp); :

For fread(), buffer is a pointer fo a region of memeory that will receive the data [rom
{he file, Tor fwrite(), buffer is a pointer to the information that will be written fo the
file. The value of count determings how many items are read or written, with each
item being nuni_bytes bytes in length. (Remember, the type size tis defined as some
type of unsigned integer.} Tinally, fpis a {ile pointer to a previously opencd strean.

The fread() function returns the number of items read. This value may be less than
court if the ond of the {ile is reached ar an crror occuts. ‘The fwrite() unction returms
the number of items written. This value will equal coumnt unless an error occuts.,

Using fread() and fwrite()

As long as the file has been opaned for binary data, fread() and fwrile() can read
and write any type of informatipn. For example, the lollowing program writes and
then teads back a double, an int, and a long to and from a disk file. Nohce how it
uses sizeof to determine the lepgth of each data type.

/* Write some non-character daza to a disk file
and read iL back. *Y

Iinzlude wsidic. b

#inciude =gbd ’b.h>

int mainivoidl

i
Filk *Ep;
doulle & = 12.23;
int 4 o= LALg
lgng 1 = 1Z23044L:

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

228 C++: The Complete Reference

it itp=topen (flesb", twhet)l so[EILT

pront-{"lamnot coon file hnvig
F=oleaie vl G

fwrite &d, sizeot(douals), 1, foi:

Lwrite &1, sizecLilnL), 1, fpl:
Lwritaisl, sizeal{long), 1, fpl;

Fowlodd {Sm) ;

d, sirecoili{deabled, 1, fp);

sizeoz{intt, 1, fpl:

sizeci{longl), 1, fpl:
printfi{"sf d 14", 4, i. li:
i e e 2o i

rotern 0;

As this program illustrates, the buffer can be (and often is) merely the memory used to

hald a variable. Tn this simple program, the return values of fread() and {wrilef) arc

ignered. In the real world, however, vou should check their return values for errors.
One of the most useful applications of fread() and fwrite() involves reading

and writing user-delined data types, especially structures. For example, given this

structure:

oL st

ot_tvpe
Zloal belanoe;
char namc(BG];

Foamansit
the following statement writes the contents of cust o the file pointed to by fp.

furite{&cuat, sizeallstruct struct_oype), 1, [o):

|
|

lmln

|

il

;.
|

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 9: File 1/0

s v TR T e R P 5 o T e T NS TSt £ 10 Pt S R AT § 0T e NI S S PR T e 5 SRR L g 7 g 2T S e

_Ifseek() and Rand m-Access |/

You ean perform random-access read and write operations using the C1/0 system with
the help of fseek{), which sets the {ile position indicator. Its prototype is shown here:

int fseek(FILE */p, long int numbytes, int arigin);
. P =3 Y &

tlere, fp is a file puinter relumed by a call to fopen(). numbites is the number of bytes
[rom origin that will become the new current position, and origin is one of the following

TMacras:
Origin Macro Name
Beginning of file SEEK_SLT
Current position SEEK_CUR
End of file SEEK_END

Therefare, to seck numbyies from the starl of the file, origint should be SEEK_SET. To
seek fromn the current position, use SEEK_CUR; and to seek from the end of the file,
use SEEK_FNT. The fseek() function returns U when successful and a nonzero value
if an error occurs.

The following program illustrates fseek(). it seeks to and displays the specified
byte in the specified file. Specify the filename and then the byte to geek to on the

1to :
command line.

ret

kinclude <stdiv.hz
fincalude <ztdlik. he

int main{int argc. char *argv[]l)
i
FZLF *trs

fiargc!i=3% {
princf{‘Usage: SEEE filenane byvtein"l

exil{i);

if({fp = fopenlargv[l], “rb'}i==NULL) {
prinll{"Cannat open tlle.\n"]:

i igente. El uso
La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vig

indebido del presente documento queda bajo tu completa responsabilidad.

230 t++: The Complete Reference

€fif5cek{ip, atocliargelz)), HEWEE_SET))
printl {"zsclk gxror, inty ;

cxitil):

printi("Byte atr §1d ls Booan', atoltargvizl]y, gete i fpll ;.

fcjosc(fp);

refturr J;

You can use fseek() to seek in multi ples of any type of data by simply multiplying
the size of the data by the number of the irom you wanl Lo weach. For example, assume
that you have a mailing list that consists of structures of type list_type. To scek to the
tenlh address in the file that holds the addresses, use this statoment:

fooekifp, S*siveof (gzruct lisi_type;, EEEX SET) :

You can determine the current location of a file using frell(}. [ts protolype is
Tong it frell(FTI E),

It returns the location of the current position of the file associated with fpr. Il a failure
vecurs, it returns -1,

In genwral, you will wanl Lo use random access only on binary files. The reason
for this is simple. Because toxt files may have character translalions performed on
them, there may not be a direct correspondence belween what is in the file snd the
byte to which it would appear that vou want to seek. The onl y time vou should usc
fseek(} with a iext file is when seckin &t 8 pusition previously determined by ftell(),
using SEEK,_SET as the origin.

Remember one important point: Even a file that contains only text can be opened
ag a binary file, if you like. There is no inhorent restriction about random access on files
vontaining text. The restriclion applies only lo files opened as text files,

fprintf() and fscanf()
I addition to the basic /O functions already discussed, the C 1/Q system includes

tprintf(Y and fscanf(). Those functions hohave exactly like printf() and scan()
except that they operate with files. The prototypes af fprintf{) and fscanf(} arc

B

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

ing
ime

he

103,

iles

Chapter 9: File 1/0

nt fprintf(FILE *fp, const char *control_string,. . .);
int fscanf(FILE *fis, const char *confrol_string,...);

where fp is a file pointer returned by a call to fopen(). fprintf() and fseanf() direct
their 1/0 operations to the fite pointed to by fp.

As an example, the following program reads a string and an integer from the keyboard
and writes them to a disk file called TEST. The program then reads the file and displays
the information on the screen., After running this program, examine the TEST file. As
you will see, it contains human-readable text.

/% fscanfi) - fprintf{} example */
#$inclade <stdin.h>

tinclude <ic.h>

#include «<stdlib.h>

int maimivoid)
{
FILE *fp;
cnar =|207;
iab L

if{ifp=fopeni"tesL", "w"]} == NULL) {
printf{"Cannot cpen file.in");
exitily;

printti"Enter a string and a mumber: "};

:

fsoanf (stdin, "$s8%d", s, &t); /* read [rom keyboavd */

forintf{fp, "%z %4, =, t): /* write to tile */
fologeifp)

if{{fp=lfopeni"test", "v"}} —- NULL)
printf{"Connot open file.An");
exibL(1);

3

fecanf (fp, "%s%d", s, &t): /* resd from fils *4
fprintfistdout, "%s %4", s, L}; /% print on screen */

return 0;

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

iy 232 C++:The Complete Reference

Aword of warning: Although fprintf() and fscanf() often are the easicst wav to
write and read assorted data to disk files, they are not always the most efficient.
Becausc [ormatted ASCII data is being written as it would appear on the screen
(instead of in binary), extra overhead is incurned with each call. So, if speed or file size
is a concern, you should probably use fread() and fwrited).

__| The Standard Streams

As ILrelates to the C file system, when a program starls execution, three streams are
opened autumatically. They arc stdin (standard input), stdout (standard ou tput}, and
stdert (standard error). Normally, lhese streams refer to the console, but they may be
redirected by the operating system to some other device in environments that support
redirectable I/Q. (Redirectable /0 is supported by Windows, XS, Unix, and QS/2,
for example.)

Because the slandard streams are file pointers, they may be used by the C1/0
system to perform 1/O operations on the console. For example, putchar() could be
defined like this:

nt purchari{ghar o)

rebina pareiin, audeatiy

In general, stdin is used (o read from the console, and stdout and stdetr are used to
write to the consele,

You may use stdin, stdout, and stderr as file pointers in any function that uses a
variable of type FILE *. For example, vou could use fgets() to input a striny: from the
console using a call like this;

char str|255;
fo=tsistr, 80, sudini;

In fact, using fgets(} in this manner can be quite useful. As mentioned earlier in this
book, when using gets() it is possible to overrun the array that is being used to receive
the characters entered by the user because gets() pravides ne bounds checking. When
used with stdin, the fgets() function offers a useful alternative because it can limit the
number of characters read and thus prevent array overruns. The only trouble is that
fgets() does not remove the newline character and gets() does, so vou will have to
manually remove il, as shown in the following program.

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.
- e

Ghapter 9: File 1/0

to #include <gtdic.h»
1t. ; #include <string.hs>
n

$1Z¢ int mair {void)

r

char str{80];
Ly 1 THE 4

printf{"fnter a s.ring: ");

r

® fgetsietr, 10, stdin};

nd

be /' remove new_ine, if presenl -/
sart i = strlen{str)-.;

¢

2, if¢striil=="\n') str[i] = '\0-;

prirtf{"This is your string: %s", =tr):

return U;

Keep in mind thal stdin, stdout, and stderr are not variables in the normal sense
and may not be assigned a value using fopend(). Also, just as these file pointers are
created automatically at the stant of your program, they are closed automatically at
the end; you should not try to close them.

The Console 1/0 Connection

& = There is actually little distinction between console 1/0 and file 170, The console T /Q

i functions described in Chapter & actually direct their 1/0 operations to either stdin or
stdout. In esserice, the console [/Q funclions are simply special versions of their parallel
fite functions. The reason they exist is as a convenience to you, the programumer.

As described in the previous section, you can pertorm console 1/0 using any of the
file system functions. However, what might su rprise you is that you can perform disk
file 1/0 using console I/Q functions, such as printf{ }! This is because all of lhe console
I/C functions operate on stdin and stdout. In environments that allow redirection

ve of 1/0, this means that stdin and stdount could refor to a device other than the keyboard
L and screen, For example, consider this programi:
1e

#include <stdio.hs

La biblioteca te proporciona este documento amparada bajo el inciso 1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

234 C++:The Complete Reference

in: moin{void?
:

[

char str|80];
printf{"Enter a string:
getsistry

prinLlislr);

return 0;

Assume that this program is calied 1EST. If you execute TEST normally, it displaysits
prompton the screen, reads a string from the keyboard, and displays (hal string on the
display. However, in an environment that supports I /O redirection, either stdin, stdout,
or both could be redirected to a file. For exa mple, in a DOS or Windows environment,

executing TEST like this:

% TEST = QUTHIT
it

causes lhe vutput of TEST to be written to a file called OUTPUT. Uxecuting TEST
like: this:

TEET « THPOT = QIFoPUT

directs stdin to the file called INPUT and sends output to the file called QUTPUT.
When a program terminates, any redirected streams are reset to their default status.

Using freopen(} to Redirect the Standard Streams

You can redirect the standard streams by using the freopent) function. This function
associates an existing stream with a new file. Thus, you can use it to associate a standard

streamn with a new file, Its prototype is
FILE *freopen{const char *filenianie, const char *made, FILE *stream);

whete filename is 4 puinter to the filename vou wish associated with the stream
pomted to by streain. The file is opened using the valuc of mode, which may have
Lhe same values as those used with fopen(). freapen() returns stream if successful
or NULL on failure.

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

Chapter 8: File 1/0 235

The following program uses freopent)} to redirect stdout toa file called OUTPUT:

finolude <andio. b

int radn{vaildl
1
char sLz[B0];

freopen ("QUTZUT", "w", atdout) ;

princf("Encter a slroing: "):

gebs(str);

aySiB BEITCElsEr) |
the

domt, revurn

at, ,

[n general, redirecting the standard streams by using freopend } is us_cful in spe_cial
situations, such as debugging. Tlowever, perfarming disk 1/O vsing redirected stdin
and stdout is not as efficient as using functions like fread(} or fwrite().

atus.
m

lard

La biblioteca te proporciona este documento amparada bajo el inciso |1V del articulo 148 de la Ley Federal de Derechos de Autor vigente. El uso

indebido del presente documento queda bajo tu completa responsabilidad.

